CFD используется для анализа движения воздуха и теплообмена в залах ЦОД, на открытых площадках с наружными чиллерами, в помещениях с инженерным оборудованием и внутри ИТ-стоек. Методы применяются на всех этапах жизненного цикла ЦОД — от концепции и детальной проработки до диагностики, апгрейдов и операционного управления.
Хотя CFD чаще всего ассоциируется с моделированием машинных залов, область применения значительно шире. Воздушные потоки вокруг наружных чиллеров и градирен, охлаждение аккумуляторных помещений и ИБП, вентиляция дизель-генераторных залов, а также любые вспомогательные пространства, где присутствует оборудование или персонал, — всё это может требовать CFD-анализа.
На практике в ЦОД CFD применяется на трёх уровнях:
Такой многоуровневый подход важен, потому что проблемы охлаждения нередко возникают не только из-за конфигурации зала, но и из-за неправильной компоновки одной стойки.
В проектировании применяются два масштабных режима: концептуальный и детальный.
На этом этапе CFD используется для выбора архитектуры охлаждения и общей схемы распределения воздуха. Точная конфигурация оборудования ещё неизвестна, поэтому применяются упрощённые модели:
Такая идеализация позволяет быстро протестировать фундаментальные решения: тип охлаждения (CRAC, in-row, overhead, свободное охлаждение), размеры и схема зала, конфигурация горячих/холодных коридоров, высота фальшпола и потолка, расположение решёток и воздуховодов.
Основная цель концептуального уровня — определить архитектуру, устойчивую к реалистичным сценариям нагрузки, без попытки предсказать детальное поведение конкретных серверов.
Когда архитектура выбрана, проводится детальный CFD-анализ. В этой стадии важна проработка всего, что в концепции было упрощено:
Детальный CFD-анализ позволяет выявить эффекты, которые невозможно увидеть в концепции: короткие замыкания потоков, локальные горячие зоны, асимметричные вентиляционные петли, нестандартные режимы работы CRAC при частичном заполнении зала.
Около половины перегревов в ЦОД вызваны не архитектурой охлаждения зала, а локальными особенностями конфигурации стоек и оборудования.
CFD применяется и для внешней аэродинамики — чиллеры, сухие охладители, градирни, генераторные помещения. Это более сложная задача: влияние ветра, турбулентные структуры, взаимодействие горячих и холодных струй, переменная роза ветров.
Моделирование внешних потоков требует повышенного качества сетки либо применения методов крупномасштабных вихрей (LES). Но для ЦОД это чаще всего экономически непрактично, поэтому применяется подход чувствительности: задача решается не как точный прогноз, а как анализ рисков.
CFD широко используется для анализа работающих дата-холлов. Модель создаётся на основе существующей конфигурации с упрощениями, достаточными для понимания общих проблем. Такой подход позволяет:
CFD также применяется как инструмент диагностики: если температура на входе стойки повышена, модель может показать, что причина не в ней, а в соседнем коридоре или даже в другом ряду стоек. Потоки могут быть крайне чувствительны к мелким деталям, что затрудняет визуальную диагностику, но точно отражается в моделировании.
Современная эксплуатация ЦОД стремится к созданию «цифрового двойника» — актуальной CFD-модели зала, обновляемой на основе данных мониторинга.
Проблема классических DCIM-систем — они дают картину текущей загрузки, но не позволяют прогнозировать последствия будущих изменений. CFD решает эту задачу, позволяя:
На крупных площадках изменение развёртки ИТ-оборудования происходит почти ежедневно. Любое перемещение стойки может вызвать локальный перегрев — и это невозможно увидеть без модели.
Для точной эксплуатации CFD-модель должна регулярно калиброваться. Это означает сравнение расчётов с фактическими измерениями и обновление параметров, если расхождения растут.
Калибровка проводится:
В процессе калибровки измеряются:
Отдельная сложность — измерение расхода через перфорированные плиты: современные плиты имеют низкое сопротивление, и установка измерительного оборудования способна искажать поток. Поэтому данные требуют корректной интерпретации.
Корректно построенная и откалиброванная CFD-модель позволяет сформировать фактически цифровой двойник ЦОД. Такой двойник: