Раздел посвящён аппаратным и программным технологиям снижения энергопотребления серверов. Рассматриваются методы динамического управления нагрузкой, планирования задач, виртуализации и согласования вычислений с выработкой возобновляемой энергии.
Современные подходы охватывают уровень аппаратной архитектуры и алгоритмическое управление ресурсами:
Неиспользуемые в данный момент серверы переводятся в спящий/экономичный режим. Эффект — снижение энергопотребления на 10–15 % за счёт временного отключения узлов.
Методы
$$ P = a \, C \, V^2 \, F $$
где: \(P\) — мощность; \(V\) — напряжение; \(F\) — частота; \(C\) — ёмкость нагрузки; \(a\) — коэффициент активности.
Система прогнозирует изменения нагрузки, заранее перераспределяет запросы и корректирует мощность серверов. Реализация базируется на анализе телеметрии и обучении с подкреплением.
Цикл обучения и принятия решений (Q-learning)
Алгоритм получает данные, выбирает действие (включить/выключить узлы, изменить лимиты), оценивает результат и обновляет модель, повышая эффективность управления мощностью.
Задачи выполняются с учётом приоритета и энергоёмкости. Оптимальный порядок снижает суммарное потребление без потери производительности.
Эвристические алгоритмы:
Энергосберегающее распределение задач
Планировщик направляет задачу на ВМ с минимальными энергозатратами; при снижении нагрузки часть ВМ переводится в спящий режим.
Сокращение числа активных серверов достигается миграцией ВМ на более загруженные узлы и отключением простаивающих машин.
Распределение и консолидация ВМ
Планировщик использует телеметрию для выбора узлов размещения и запуска миграций. Это выравнивает загрузку и высвобождает оборудование.
Контейнеризация (Docker, LXC, KataContainer, FireCracker) использует общее ядро ОС и снижает накладные расходы по сравнению с традиционными ВМ. Unikernel — минимизированный образ приложения с необходимыми компонентами ОС (например, MirageOS, ~449 КБ).
Подход Green-aware Scheduling: выполнение задач смещается в периоды пиковой выработки солнечной/ветровой генерации, снижая потребление из сети.
Сравнение режимов